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Using polarized infrared (IR) spectroscopy we have observed deformation of a polymer
network in a liquid crystal host during the reorientation of the liquid crystal by an external
electric � eld. In the system studied, containing 2% BMBB-6 polymerized at zero applied � eld
in the host nematic liquid crystal 6CB, the observed deformation angle was between 20 ß and
40 ß Ô 10 ß . These experimental results provide some of the � rst conclusive experimental
evidence that the polymer network elastically deforms as a direct result of the reorientation
of the liquid crystal host.

1. Introduction adopted IR spectroscopy as a tool to investigate the
orientational changes of the mesogenic moieties of theThe discovery of polymer dispersed liquid crystals

(PDLCs) [1]; formed by polymerization induced phase polymer networks [12] resulting from polymer–liquid
crystal interactions.separation, suggested various novel electro-optic appli-

cations. Subsequentl y, interest in liquid crystalline materials
con� ned to various geometries has been intensi� ed better 2. Experimental

Samples were prepared by dissolving 1.8 wt %to understand the interaction between the liquid crystal
and polymer. A new system called polymer stabilized of monomer 4,4 ¾ -bis{4-[6-(methacryloyloxy )hexyloxy]-

benzoyloxy}-1,1 ¾ -biphenylene (BMBB-6, see � gure 1 forliquid crystal (PSLC) was recently proposed [2–4]
for application to conventional liquid crystal display structure) and ~0.2 wt % of the photoinitiator benzoin

methyl ether (BME) in the nematic liquid crystaldevices. In a PSLC system, liquid crystal is mixed with
a monomer and then polymerized. However, unlike the 4-hexyl-4 ¾ -cyanobipheny l (6CB, see � gure 2 for structure) .

The nematic–isotropic (N–I) transition temperature TN-IPDLC systems, the monomer concentration is very
low—often less than 5%. Polymer networks in PSLC of bulk 6CB is 28 ß C, the crystalline–nematic transition

is at 13.5 ß C. 6CB was chosen because one can easilysystems have been shown signi� cantly to improve the
electro-optic performances of several di� erent types of identify the polymer networks, which contain ester

groups, from the 6CB background by IR spectroscopy.liquid crystal display [5–10].
Preliminary investigation of the in� uence of polymer The mixture was brie� y homogenized at 50 ß C. Salt

(sodium chloride crystal ) slides were � rst coated withnetworks in nematic liquid crystal have been performed
and a reasonable agreement between experimental and indium tin oxide (ITO) of thickness 600 AÃ , and were

then spin coated with polyimide alignment layer Nissancalculated results has been demonstrated [11]. However,
the elastic deformation of the polymer network was not 1180, thinned 3 : 1, at 4000 rpm. The polyimide coated

salt slides were baked at 80 ß C for 60 min and then atseparated from other factors a� ecting the strength of the
polymer–liquid crystal interactions. In this work we have 120 ß C for 60 min. The polyimide was hand-rubbed and,

Figure 1. Structure of monomer BMBB-6.
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360 C. D. Hoke et al.

formed in this way has been previously shown to be
anisotropic [13–15]. An a.c. (1 kHz) electric � eld applied
to the sample causes the liquid crystal molecules, because

Figure 2. Structure of 6CB.
of their positive dielectric anisotropy (De > 0), to align
preferentially parallel to the � eld direction. The infrared

based on the manufacturer’s data sheet, we expected
absorption changes of C± O and C 5 O in the ester groups

to obtain a low pretilt of about 1 ß . Salt slides with
on the mesogenic units of the polymer networks were

rub directions antiparallel to each other and separated
monitored as a function of the electric � eld strength, to

by mylar spacers of nominal thickness 12.5 mm were
observe how the polymer network is in� uenced by the

cemented with a � ve-minute epoxy on two opposite
reorientation of the surrounding liquid crystal host.

sides. In this type of cell the director � eld, in the absence
Three di� erent absorption peaks were monitored to

of an applied electric � eld, will be uniformly aligned
provide information speci� c to either the liquid crystal

without any distortion. One cell was � lled with the
or polymer (see the table).

liquid crystal and monomer mixture at ambient tem-
perature. It was then heated to above the clearing

3. Resultstemperature and slowly cooled back to room temperature
Figure 4 illustrates the absorbance vs. wavenumberto achieve a texture-free and uniform alignment. Lastly,

with the solid curve corresponding to the sample withthe cell was exposed to a UV light source to polymerize
polymer networks, and the dotted curve correspondingthe monomers. Light scattering due to phase separation
to the sample � lled with only the liquid crystal 6CB.between the polymer network and liquid crystal occurred
The absorbance is de� ned by:as shown in � gure 3. A second cell was prepared and

then � lled with pure 6CB for comparison purposes. To
A =Pb a n d w id th

lnA 1

%TB dv (1)perform the measurements, an IR polarizer was mounted
on a holder in the sample chamber of the infrared spectro-
scopy system (Nicolet Magna-IR spectrometer 550). where %T = I/I0 .

The C± O band in aryl conjugated esters, such as inThe cells were then placed in another holder such that
the rubbing direction was parallel to the polarization the monomer used in this experiment, usually absorbs

strongly in the infrared near 1280 cm Õ
1 . However, duedirection of the infrared polarizer.

Due to the low monomer concentration (~2 wt %), the to its low concentration (~2 wt %), only a weak absorp-
tion peak was observed in this study. Because of theirmixture of liquid crystal and monomer is homogeneous

and in the liquid crystalline phase at room temperature. location in the core region of the mesogenic unit of the
polymer networks, any systematic change in the esterWhen the monomers are being photopolymerized the

surface alignment layers control the orientation of the C± O absorbance can be taken as a direct indication that
the polymer networks were undergoing reorientation.liquid crystal and, consequently, the orientation of meso-

genic units of the polymer networks. The polymer network Another factor that could a� ect the degree of absorption

Figure 3. Image of the polymer
stabilized 6CB sample taken
between crossed polarizers with
the optic axis of the liquid
crystal aligned with one of the
polarizers. The bright spots
appear to be phase separated
polymer rich regions.
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361Polarized infrared study of a polymer network

Table. The two absorption peaks investigated. The C º N stretch peak is only from the liquid crystal 6CB; the C± O stretch peak
is only from the polymer networks. We de� ne the integrated absorbance as the area of the absorption peak with baseline
correction considered.

Relative absorbance
Observed Integrated absorbance, Integrated absorbance, change/%

Peaks/cm Õ
1 Assignments [16] zero applied voltage at 8 = rms (1 khz) (A8 Õ A0 )/A0

2229 C º N stretch 17.402 7.493 Õ 56%
(no polymer) (2200–2255 cmÕ

1 ) (2200–2255 cmÕ
1 )

2229 C º N stretch 18.007 9.215 Õ 49%
(polymer stab.) (2200–2255 cmÕ

1 ) (2200–2255 cmÕ
1 )

1254 C± O stretch 2.002 1.721 Õ 14%
(polymer stab.) (1225–1275 cmÕ

1 ) (1225–1275 cmÕ
1 )

1730 C 5 O stretch 2.181 2.364 8%
(polymer stab.) (1700–1775 cmÕ

1 ) (1700–1775 cmÕ
1 )

Figure 4. Infrared absorbance vs.
wavenumber for a pure 6CB
� lled cell (dotted curve) and
for a cell that contains both
6CB and polymer network.
Three absorption peaks have
been labelled. The ester C± O
and C 5 O absorption peaks are
missing for the pure 6CB cell.

is the variation in the local � eld caused by the reorientation The absorbance of linearly polarized light can be
written [18]:of the liquid crystal host, however this has been estimated

to a� ect the absorption by only a few % [17].
Figure 5 illustrates the absorbance changes A(y)= CCS

2
sin2 b +

1 Õ S

3
+

S

2
(2 Õ 3 sin2 b) cos2 (y)D .

(A8 V rm s Õ Az e r o -f i el d ) vs. wavenumber (the absorbance
(2)at 8 V minus the absorbance at zero � eld). From the

data listed in the table we � nd that, for the liquid It will depend on: the angle (b) of the transition moment
crystal host in the sample with no polymer network, with respect to the molecular axis, the scalar order
the relative absorbance change of C º N stretching is parameter (S) of the molecule, and the angle (y) between
100% Ö (A8 V rm s Õ Az e r o -f i el d )/Az e r o -f i el d # Õ 56%; whereas the polarization axis of the incident light and the director.
the liquid crystal host in the polymer stabilized sample We can use the above expression in conjunction with
shows a relative change of # Õ 49%. For the polymer the measured relative absorbance change to determine
network itself, the relative absorbance change of ester the magnitude of the molecular reorientation:
C± O stretching is 100% Ö (A8 V rm s Õ Azero -f ield )/Azero -f ield #
Õ 14%, whereas a relative absorbance change of 8% Dy = arccosC2

3

S(3 cos2 b Õ 1) +1

S(3 cos2 b Õ 1)
R +1D1 /2

(3)
was calculated for the C 5 O stretch.
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362 C. D. Hoke et al.

Figure 5. Infrared absorbance di� er-
ence (with and without applied
a.c. voltage) vs. wavenumber for
a pure 6CB � lled cell (dotted
curve) and for a cell containing
both 6CB and polymer network.
As in � gure 4, two absorption
peaks have been labelled. The
ester C± O absorption change
is clearly presented, indicating
that the polymer networks were
deformed by the reorientation
of the liquid crystal host.

where

R =
A(y8 V ) Õ A(y0 V )

A(y0 V )
. (4)

In our experiments the polarization vector of incident
light is parallel to the director (y0 V = 0). To obtain
numerical results we require estimates of the angle the
transition moment makes with respect to the molecular
axis for the C º N bond in 6CB, and both the C± O and
C 5 O bonds in BMBB-6. The values were obtained by
minimizing the conformational energy of the molecules.
Using this technique we arrived at # 0 ß and 45 ß for
the C º N and C± O bonds, respectively, and 75 ß for the
C 5 O bond.

The negative sign of the change in the C º N absorption
tells us that, after the a.c. electric � eld had been applied,
the liquid crystal molecules were reoriented parallel
to the direction of the electric � eld. From � gure 5, it Figure 6. Comparison of the liquid crystal reorientation in
is clear that the ester C± O absorption peak change is two separate samples; one containing pure 6CB, the other

6CB and BMBB-6.also negative which indicates that the mesogenic units
of the polymer networks also aligned parallel to the
surrounding liquid crystal molecules.

Figure 6 shows the average reorientation angle of the Figure 7 compares the measured reorientation of the
liquid crystal in the polymer stabilized sample with theliquid crystal as a function of the order parameter for

both the polymer stabilized and polymer free cells. The polymer network itself. The data indicates a substantial
reorientation of the polymer network. We attempted toresults indicate that the reorientation of the PSLC

sample is # 5 ß –7 ß less than the sample containing pure adjust the b value for the C± O and C 5 O (keeping the
sum of these equal to 120 ß ) to make the results more6CB over a range of values for the liquid crystal order

parameter. This di� erence is most likely due to the consistent with each other, as we would expect both
measurements to yield the same results. However, wecoupling between the polymer network and the liquid

crystal. were unable to do so for variations of Ô 10 ß in b. The
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363Polarized infrared study of a polymer network

crystal host in the presence of an externally applied � eld.
The polymer network deformation is recoverable once
the applied electric � eld is turned o� ; therefore this
deformation is elastic in nature. In order to develop a
better model for PSLC systems, similar, more detailed
experiments will be pursued.

The authors wish to thank S. Keast, K. Ha, C. Snively
and J. L. Li for useful discussions. This research was
supported in part by the National Science Foundation
(NSF) Science and Technology Center AlCOM grant
89-20147.
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